- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Dieng, Adji_Bousso (3)
-
Arnold, Craig (1)
-
Nguyen, Quan (1)
-
Niyongabo_Rubungo, Andre (1)
-
Pasarkar, Amey P (1)
-
Rand, Barry_P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The prediction of crystal properties plays a crucial role in materials science and applications. Current methods for predicting crystal properties focus on modeling crystal structures using graph neural networks (GNNs). However, accurately modeling the complex interactions between atoms and molecules within a crystal remains a challenge. Surprisingly, predicting crystal properties from crystal text descriptions is understudied, despite the rich information and expressiveness that text data offer. In this paper, we develop and make public a benchmark dataset (TextEdge) that contains crystal text descriptions with their properties. We then propose LLM-Prop, a method that leverages the general-purpose learning capabilities of large language models (LLMs) to predict properties of crystals from their text descriptions. LLM-Prop outperforms the current state-of-the-art GNN-based methods by approximately 8% on predicting band gap, 3% on classifying whether the band gap is direct or indirect, and 65% on predicting unit cell volume, and yields comparable performance on predicting formation energy per atom, energy per atom, and energy above hull. LLM-Prop also outperforms the fine-tuned MatBERT, a domain-specific pre-trained BERT model, despite having 3 times fewer parameters. We further fine-tune the LLM-Prop model directly on CIF files and condensed structure information generated by Robocrystallographer and found that LLM-Prop fine-tuned on text descriptions provides a better performance on average. Our empirical results highlight the importance of having a natural language input to LLMs to accurately predict crystal properties and the current inability of GNNs to capture information pertaining to space group symmetry and Wyckoff sites for accurate crystal property prediction.more » « less
-
Nguyen, Quan; Dieng, Adji_Bousso (, MLR)Experimental design techniques such as active search and Bayesian optimization are widely used in the natural sciences for data collection and discovery. However, existing techniques tend to favor exploitation over exploration of the search space, which causes them to get stuck in local optima. This collapse problem prevents experimental design algorithms from yielding diverse high-quality data. In this paper, we extend the Vendi scores—a family of interpretable similarity-based diversity metrics—to account for quality. We then leverage these quality-weighted Vendi scores to tackle experimental design problems across various applications, including drug discovery, materials discovery, and reinforcement learning. We found that quality-weighted Vendi scores allow us to construct policies for experimental design that flexibly balance quality and diversity, and ultimately assemble rich and diverse sets of high-performing data points. Our algorithms led to a 70%–170% increase in the number of effective discoveries compared to baselines.more » « less
-
Pasarkar, Amey P; Dieng, Adji_Bousso (, The 27th International Conference on Artificial Intelligence and Statistics (AISTATS))
An official website of the United States government

Full Text Available